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Abstract—We present the Layered Merkle Patricia Trie
(LMPT), a performant storage data structure for process-
ing transactions in high-throughput systems when com-
pared to traditional Merkle Patricia Tries used in Ethereum
clients. LMPTs keep smaller intermediary tries in memory
to alleviate read and write amplification from high-latency
disk storage. Additionally, they allow for the I/O and
transaction verifier threads to be scheduled in parallel and
independently. LMPTs can ultimately reduce significant
I/O traffic that happens on the critical path of transaction
processing. Empirical results confirm that LMPTs can
process up to ×6 more transactions per second on real-life
workloads when compared to existing Ethereum clients.

Index Terms—Blockchain, data storage, transaction ex-
ecution, Merkle Patricia trie

I. INTRODUCTION

Popularized by cryptocurrencies [3], [21], blockchain
platforms have become increasingly prevalent today.
They enable decentralized ledgers at great scale that
fuel innovation in diverse sectors such as finance [13],
supply chain [29], and healthcare [20]. One issue that
continues to challenge their wider adoption is their
limited transaction throughput. To ensure safety, the
consensus protocols used by blockchain platforms like
Bitcoin and Ethereum conservatively apply slow block
generation rates and restrict block sizes. Consequently,
this allows them to process only 7 to 30 transactions per
second (TPS) [16], [26], when compared to traditional
centralized systems that can parse thousands of transac-
tions per second.

To address this bottleneck, new consensus protocols
have been proposed in recent years. For example, Al-
gorand [15], Conflux [18], Prism [11], and OHIE [31]
can process thousands of transactions per second. In
doing so, innovations in high throughput ledgers also
revealed an important but overlooked challenge: trans-
action execution performance. Particularly, transactions
that frequently access the blockchain state tend to be-
come the new performance bottleneck that limits the
overall throughput of a blockchain platform. For in-
stance, when importing previously downloaded trans-
actions, popular Ethereum clients like GoEthereum [4]
and OpenEthereum [5] can only process 700 TPS on a

laptop with a SSD, which is significantly lower than the
capability of many new consensus protocols [17].

Previous studies have shown that the bottleneck of
executing transactions in Ethereum clients is of process-
ing read/write operations on the underlying blockchain
state [17], [25]. The blockchain state in Ethereum is
a key-value structure that maps account addresses and
persistent state to the corresponding account metadata
and values. Ethereum stores its state as a Merkle Patricia
Trie (MPT) [30]. Each node in the trie has up to
sixteen children where each path from the root to a
leaf node corresponds to a hexadecimal-encoded key and
the leaf node holds the corresponding value of the key.
Furthermore, each inner node in the MPT contains the
hash result of all of its children. As such, a Merkle proof
of a key-value pair consists of hashes of all nodes along
the path to the leaf node of the key. The root hash value
is published globally in the header of each Ethereum
block so that anyone can verify the key-value pair with
the proof.

In this configuration, read/write operations in a MPT
are slow since: 1) a read/write to a key-value pair is
amplified to multiple I/O operations of all nodes along
the corresponding path of the key in the MPT, 2) a
write operation recomputes the hashes of all inner nodes
along the path in the MPT, and most importantly, 3)
the transaction execution thread has to wait for costly
read/write operations to complete before it continues
to the next instruction or transaction. Notably to those
observations is the fact that to ensure deterministic exe-
cution outcomes, blockchain clients execute transactions
sequentially in a single thread.

This paper presents the Layered Merkle Patricia Trie
(LMPT), a novel authenticated storage structure for high
performance blockchains. LMPTs can directly operate
with transaction execution engines that implement the
Ethereum Virtual Machine (EVM). The empirical results
presented show that LMPTs speed up the transaction
execution throughput by up to 6 times. The net-effect
is that, in conjunction with existing innovations on
consensus algorithms, LMPTs can significantly improve
the transaction throughput of blockchain platforms.



The LMPT consists of a snapshot MPT and a flat key
value store that holds the blockchain state at a recent
block height, an intermediate MPT that contains updates
to the blockchain state on top of the snapshot MPT,
and a delta MPT that contains updates on top of the
intermediate MPT. LMPT records new updates to the
blockchain state first into the smallest delta MPT. For
a predetermined number of blocks (e.g., 1000 blocks),
LMPT merges the updates from the intermediate MPT
into the snapshot MPT to form a new one. Then, the old
delta MPT becomes the new intermediate MPT and the
new delta MPT is emptied.

One advantage of the LMPT design is reduced in-
tensity and amplification of read and write operations.
Because the intermediate MPT and the delta MPT only
hold recent updates to the blockchain state, they are
small enough to be stored entirely in memory. Evidently,
the small depths of the two tries reduce the I/O amplifi-
cation of reads and writes. In addition, as more decen-
tralized applications (DApps) move into the blockchain
ecosystem, popular smart contracts are expected to have
greater localized access patterns on blockchain state [7].
Consequently, most reads and writes in the transaction
execution thread will only access the intermediate and/or
delta MPTs, which are cached in memory.

Another advantage of LMPT is to decouple the ex-
pensive disk I/O operations from the critical transaction
execution thread as much as possible. Furthermore, the
blockchain clients can parallelize the construction of
snapshot MPTs with the transaction execution thread.
Reads that do not require authentication can be executed
from an internal flat key value store, instead of querying
the full trie.

We evaluated LMPT with real-world workloads and
benchmarks for simple payments and ERC20 smart con-
tracts. We sampled 500, 000 transactions from Ethereum,
and packed blocks to simulate blocks on the real network
based on gas limits. Our results show that LMPT is able
to considerably outperform the Ethereum MPT for larger
genesis states under the same hardware constraints and
system usage. LMPTs are able to sustain up to 3000
TPS for simple payments and 2000 TPS for ERC20
smart contracts for 10 million senders in the genesis
state, which is roughly ×6 faster than the existing MPT
structure in Ethereum clients. These results show that
LMPT is increasingly suitable for blockchain systems
as the state trie grows exponentially bigger.

In summary, the paper makes the following contribu-
tions:

• LMPT: We present a novel authenticated storage
structure called LMPT that significantly reduces
the amplification effect of read/write operations and
decouples expensive disk I/O operations from the
critical transaction execution thread.

• EVM Transaction Execution Engine with
LMPTs: We present the design, implementation,
and evaluation of an EVM transaction execution
engine integrating LMPTs that empirically enables
the transaction execution engine to process up to
3000 TPS (i.e., ×6 times compared to traditional
MPTs).

The remainder of this work is organized as follows.
Section II presents the background and the overview of
LMPT. Section III presents the design of LMPT, respec-
tively. We evaluate the implementation of the LMPT on
real world benchmarks in Section IV. In Section V we
discuss related work. We finally conclude in Section VI.

II. BACKGROUND AND OVERVIEW

In this section we first describe how Ethereum uses
the MPT to store the ledger state and why read/write
operations on MPTs are a performance bottleneck during
transaction execution. We then present an overview of
LMPTs and how they tackle this bottleneck.

A. Background

Ethereum is a state machine constituted of a genesis
state and transactions that modify the state [30]. The
state includes account information, which consists of
the nonce, account balance, the storage root hash of
the account’s storage trie, and the EVM code hash. It
is kept in a top level state trie, where there is a mapping
between the Keccak256 hash of the account address
and the state. Ethereum then executes state transition
functions using the EVM. Transactions are packed into
blocks that are hashed with previous blocks. To check
whether a block is valid in a chain, the block header
stores the cryptographic hash of the MPT root. Hence,
any tampering of the block state can easily be detected
by verifying the root hash of the MPT.

To efficiently store authenticated state, Ethereum uses
a modified MPT structure to compress key-value pair
hashes. The key is a 256-bit hash of the account address,
which maps to the stored account data as the value. Since
light clients in Ethereum do not have full access to all the
data in the blockchain, it is crucial to have authenticated
data reads and writes so light clients can verify the state
with partial proofs with the help of a full client that has
access to all the data in the blockchain.

In a MPT, we distinguish three types of nodes: branch,
extension, and leaf nodes. A branch node stores up to
16 pointers, one per hexadecimal, that point to either a
leaf node, extension node, or another branch node. An
extension node compresses a byte sequence that can be
used to compress nodes with a shared hash sequence
and contains the pointer to the next node in the tree. A
leaf node stores the encoded path and the value itself.
Finally, the root of the tree is used to create a hash that
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Fig. 1: MPT used in Ethereum. A node contains the hash
of its children nodes, preventing data tampering. A path
of the trie can be travelled by one hexadecimal at a time,
shown by the branch node, until a leaf node is reached.

is dependent on all the leaf values, which can be used by
light clients to verify data originated from a full client
with access to the entire blockchain state.

Fig. 1 illustrates the MPT structure. It shows how a
path can be constructed from the root to extension and
branch nodes, down to the leaf nodes. The Ethereum
block header contains the Keccak256 hash of the root
to allow both efficient storage and verification of block
data. From the root, there are branch nodes for each
hexadecimal that contain pointers to the next node in the
path of the trie. In addition, each node contains a hash of
its children nodes, which allows to efficiently compare
whether two trees have the same data by checking the
hash of their roots. By traversing the path down the
tree to its leaf node, we can verify the existence of a
particular account key-value in a blockchain state.

In addition, when an authenticated read query is
executed on a MPT, it requires a proof that shows a valid
path between the root node and the leaf node. This path
is then used to recompute the signature independently,
and verify that the read value exists in the trie. This is
imperative for data access in light clients that do not store
the entire state trie. Authenticated reads in a standard
MPT are costly due to high read amplification as clients
track down nodes in the MPT. Since each node access
requires an additional database read, each authenticated
read in Ethereum can have a read amplification of 64, or
one per hexadecimal in the 256-bit hash of the address.

B. Observations and Motivation
We describe an experiment using OpenEthereum, a

popular and fast open-sourced Ethereum client [5]. We
use OpenEthereum to import blocks containing transac-
tions that regularly access the blockchain state and use
perf [6] to profile transaction execution. We observed
that as transactions access the blockchain state more
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Fig. 3: A sequential thread execution for database (DB)
reads in the EVM

frequently, the transaction processing throughput became
lower. Our findings are consistent with prior work [17]:
the majority of transactions execution time is spent on
operations that access the blockchain state, e.g., EVM
opcodes such as SLOAD and SSTORE.

Observation 1: The blockchain storage is the primary
performance bottleneck for transaction execution.

In particular, we observe that transaction execution
threads frequently become blocked waiting for the disk
I/O operations to finish. Fig. 2 illustrates our profiling
findings. While the verifiers wait for disk I/O operations
to finish, resources like CPU and memory are under-
utilized and idle during transaction execution.

Fig. 3 presents an example to illustrate the root cause
of the latency-bound issue. The left part of Fig. 3
presents a Solidity code snippet which reads an array
stored in the MPT. In Ethereum, read/write operations
will be translated into SLOAD/SSTORE EVM instruc-
tions, as shown in the middle of Fig. 3. Because the EVM
is designed to execute transactions and EVM instructions
sequentially, the transaction execution thread has to wait
for the results of SLOAD before it can execute the next
instruction. The SLOAD execution reads the data from
the MPT and is eventually amplified into multiple key-
value read operations, shown on the right of Fig. 3.

Similar latency-bound issues exist for MPT write
operations and SSTORE instructions. In particular, each
Ethereum block contains the MPT state root hash that
existing clients have to compute and verify. Thus, the
transaction execution thread will wait for all MPT write
operations associated with one block to finish before it
continues to the next block. Although the latency of the
write operations only happens at the block level, it is on
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the critical path for the performance because it cannot
be mitigated by memory cache in the Ethereum client.

Observation 2: The primary performance bottleneck
of MPT: transaction execution thread waits for expe-
nsive disk I/O operations and becomes latency bound.

Cache size (MB) Hit Rate TPS
50 0.635 1238
100 0.758 1256
500 0.862 1278

1000 0.879 1292

TABLE I: Cache hit rates in OpenEthereum

Table I presents our experimental findings on the
OpenEthereum client with different memory cache
sizes for the MPT database. We import blocks contain-
ing random simple payment transactions and report the
transaction throughput under different cache sizes. In
Table I, we observe that increasing the memory cache
size in OpenEthereum had an immediate effect on the
cache hit rate, i.e. around 25%. However, the cache sizes
had no significant impact on overall performance, and
throughput increased by no more than 5%. These results
show that simply enlarging the memory cache of MPT
or naively allocating more memory to the process may
not improve the transaction execution sufficiently.

C. LMPT Overview
To reduce I/O amplification and separate the critical

path of blocking threads, we propose a new data struc-
ture, namely LMPT, to store authenticated Ethereum
state. The LMPT consists of three distinct MPTs that
act as “caches” for any authenticated access: delta,
intermediate, and snapshot MPTs. For every read access
to the state tree, the request first searches the delta MPT.
If the requested data is not found, then the intermediate
MPT is searched, then finally, the snapshot MPT is
checked. This hierarchical cache structure reduces read
amplification on the key path (especially for hot data)
and reduces very costly accesses to disk. Fig. 4 shows
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struct Trie {
root: uint256,
kv: Map

}
struct LMPT {
delta, interm: Trie, // In memory
snapshot: Trie, // In disk
flat: Map // In disk

}

Fig. 6: LMPT Data Structure

how authenticated and simple reads access data in the
LMPT. The smaller delta and intermediate tries are
stored in memory to allow for faster access to hot data,
while the larger snapshot trie and the flat key-value store
are stored in disk. For authenticated reads that require
Merkle proofs, the snapshot trie provides information
about the account. Simple reads requested from the full
node itself can be read from a flat key-value store, which
reduces any read amplification for accessing a value.

For a write, instead of immediately flushing changes
to disk, the delta MPT is updated. Caching writes allow
to have a consistent view of the entire system at the small
cost of storing and updating the delta MPT in memory.
To keep the MPTs small, the changes are flushed at
periodic checkpoints, where the delta MPT changes are
merged to the intermediate MPT and the intermediate
MPT is merged into the snapshot MPT. Fig. 5 shows how
the delta MPT is stored inside the memory while a back-
ground process merges any larger changes between the
intermediate and snapshot MPT. As a result, the writes
are periodically batched and completed independently
from the critical path of transaction verification.

III. LMPT DESIGN

In this section, we outline the design of LMPTs and
describe the fundamental improvements they bring to
transaction throughput in the storage layer for blockchain
clients.



T := LMPT()
fn write_LMPT(k,v) {

root := T.delta.put(T.delta.root,k,v)
T.delta.root := root

}
fn read_LMPT(k) -> <v,p> {

<v,p1> := T.delta.get(delta.root,k)
if v is present

return <v,p1>
<v,p2> := T.interm.get(T.interm.root,k)
if v is present

return <v,p1 + p2>
if auth_proof

<v,p3> := T.snapshot.get(T.snapshot.root,k)
return <v,p1 + p2 + p3>

else
v := flat.get(k)
return <v,ε>

}

Fig. 7: LMPT read and write operations

A. Definitions and Data Structures

In Fig. 6, we define the data structures used to
architect the LMPT. We first define the data type trie,
which consists of a uint256 root hash and a key-value
map as an abstraction for storing authenticated data. The
LMPT data structure is comprised of four components:
the delta, intermediate, and snapshot tries, and the flat
key-value store map. The delta and intermediate trees are
stored in memory and contain frequently accessed state.
The snapshot tree and flat key-value map store the entire
blockchain state on disk, and return the values for an
authenticated and non-authenticated access, respectively.

B. Read and Write Operations

In Fig. 7, we present the pseudocode for LMPT read
and write operations. For a write, the value is always
updated on the delta trie, which is kept in memory so
that hot data can be queried quickly. For a read, we first
query the delta trie, and if a value does exist in the delta
trie, we can verify existence for that value and simply
return the value and path. If the value does not exist,
then we need to return proof by showing that the two
adjacent paths, i.e. a path that is immediately greater
and immediately less than the value, exist in the tree
instead. Using this returned proof of adjacent paths, we
query the intermediate trie to check for the value. If the
intermediate trie contains the corresponding value for the
key, we return the resulting data and the combined proof
from the delta and intermediate tries. Finally, if the key
is not present in the delta or intermediate trie, then it is
queried from disk. If the client requires an authenticated
read, then it must query the snapshot trie on disk for
the value. If the client can trust the authenticity of the
data, e.g. reading state from its own database, then the
client can query the flat store map to eliminate any
read amplification. By querying the disk last, we can
delay costly reads from disk and reduce incurring large

fn merge_compute(T) -> (root′, flat′) {
flat′ := T.flat
root′ := T.snapshot.root
for <k, v> in T.interm.kv(T.interm.root)
root′ := T.snapshot.append(root′, k, v)
flat′ := flat′.set(k, v)

return (root′, flat′)
}
fn merge_update(T, root′, flat′) {

T.flat := flat′

T.snapshot.root := root′

T.interm := T.delta
T.interm.root := T.delta.root
T.delta := Trie()
T.delta.root := None

}

Fig. 8: LMPT merge operations

block_cnt := 0
T := LMPT(genesis_state)
while Block is processing
for transaction in Block
T.update_trie(transaction)

block_cnt += 1
if block_cnt % merge_interval == 0
Wait for last spawned thread to end
merge_update(T, root′, flat′)
spawn_thread(root′, flat′=merge_compute(T))

Fig. 9: Flushing updates to disk on a background thread

read amplification on bigger tries by having smaller,
intermediary authenticated data structures in memory.

C. Trie Merge Operations
In Fig. 8, we give the two step merge process of

the different trie structures behind the LMPT. The
merge_compute function updates the snapshot trie
and flat store map on disk. At predefined intervals,
merge_compute is called to update and append all
the changes from the intermediate trie to its snapshot
trie and flat store map, and returns the new snapshot
root and key-value map. This function allows to batch
writes to disk at once and allows the snapshot MPT on
disk to be updated efficiently without having to update
every single interior node on the MPT, which greatly
reduces write amplification. In addition, the merging
can be parallelized and distributed to multiple threads,
which prevents blocking the main execution thread on
the critical path for I/O accesses.

The merge_update function defines how the tries
in the LMPT are updated. merge_update accepts
the new snapshot root and flat store map that were
returned by the function merge_compute. Then, the
intermediate trie is set to the smaller delta trie, and the
delta trie is flushed and initialized by a new empty trie.

Finally, Fig. 9 shows a procedure that merges new
data using a background thread so it does not block
the critical path for the client. While a new block is
being processed by the node, the incoming transactions
in the block are written into the delta and intermediate



tries of the LMPT. After each block is processed, a
block counter is incremented as the tries in memory
are filled with new incoming data. When the counter
reaches a particular threshold, defined as the merge
period interval, the process waits until all the remaining
transactions are processed and threads that are merging
tries finish. Then, the process calls the merge_update
function to update the tries and flat store map computed
by merge_compute. This two parts process allows
data to be batched and flushed from memory to disk
by a background thread so the main execution thread
continues verification normally and only accesses the
disk for the merge period intervals. After the tries are
merged, a new background thread is spawned so that
the incoming data can be integrated into the snapshot
trie and flat store and flushed to disk in the next merge
period.

D. Integration with Blockchain Clients

The LMPT can replace the standard MPT in
Ethereum-like systems with the following modifications:

1) Ethereum uses a 32-byte root hash of the MPT rep-
resenting the resulting state of each executed block.
LMPT consists of three tries, but we can use one-
way cryptographic hash functions like Keccak256
to combine the root hashes of the tries to generate
a single 32-byte root hash representing the state.

2) The authentication proof contains the proof combi-
nation of multiple tries, if the value is not found
in the delta trie. We need to update the proof
verification process accordingly so that the proof
combination from the delta, intermediate, and snap-
shot tries is accepted by the verifier.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the transaction throughput
on Ethereum clients with and without the LMPT using
different workloads based on simple payment transfers
and ERC20 smart contracts.

A. Implementation

To compare LMPT’s storage performance with ex-
isting Ethereum MPT implementations, we modify the
OpenEthereum client to implement the LMPT instead
of the standard Ethereum MPT. The OpenEthereum
client is one of the fastest Ethereum clients available [2].
In particular, we modify the existing storage engine of
OpenEthereum to integrate the delta trie, intermediate
trie, snapshot trie, and flat store instead of the single
MPT structure. In addition, we alter the verification
engine of OpenEthereum so that the LMPT merging
process from Section III can be integrated into the client.
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Fig. 10: TPS for LMPT-based OpenEthereum and the
standard OpenEthereum for simple payment transac-
tions. The top graph corresponds to the Ethereum traces
benchmark and the bottom graph corresponds to the
random senders traces benchmark.

B. Experimental Setup
The experiments are run on an AWS EC2 i3.xlarge

instance with 4 vCPU, 30GB memory, and 1TB SSD
storage. We run our LMPT implementation and compare
it with the standard OpenEthereum v3.1.0, publicly avail-
able on Github [5]. In order to purely compare storage
performance, we turn off the consensus engine and run
the experiments in a private network, so the blocks can
be instantly mined and network effects will be negligi-
ble. We further collect a sample trace of 500, 000 real
transactions from the Ethereum network. We replicate
the transaction behavior and pack blocks to mimic real
world conditions. The blocks are created to reflect real
gas limits, which is 150 transactions per block for simple
payments and 20 transactions per block for ERC20. For
ERC20 workloads, we sample transfer transactions for
the Tether token, which is one of the most popular
ERC20 tokens on Ethereum [1]. We monitor memory
usage for both the LMPT implementation and standard
OpenEthereum to ensure that the average memory usage
for both experiments are relatively equal.

C. Simple Payments
Ethereum traces benchmark: We re-create blocks
with the transaction traces collected from real Ethereum



simple payment transactions. This allows us to import
the blocks and measure the true performance of the
authenticated storage structures. Since real Ethereum
simple payments require their respective private keys of
the senders, we create a one-to-one mapping between
each public address and a generated public-private key
pair. This enables one to send and sign transactions using
the generated private keys to keep the integrity of the
real-life workloads on the main network.
Random senders traces benchmark: In addition, we
create another benchmark where we send simple pay-
ment transactions from a set of random senders ad-
dresses. We define each random sender with a high initial
ETH balance in the genesis block, and send transactions
with an evenly distributed load. Although the number of
accounts in the initial states differs, every unique sender
is guaranteed to send at least one transaction to a random
receiver. Similar to the Ethereum traces benchmark, we
send a total of 500, 000 transactions from the random
senders pool.
Initial State: In the experiments, we prepare different
initial states with an increasing number of accounts
in the genesis block and measure the throughput in
transactions per second for importing blocks on the
client. This is because in our initial tests, the number
of accounts in the genesis state does have a signifi-
cant impact on performance. Contrarily, the number of
transactions has little effect on the overall TPS, aside
from storage warm up times (cache loading) for the
initial transactions. Even as transactions increase, we do
not observe significant difference in transaction import
times. We track workloads with large numbers of senders
and receivers, which would not fit entirely in the program
memory and require I/O accesses from storage.

Fig. 10 shows the size of initial state versus perfor-
mance for LMPT-based OpenEthereum and the standard
OpenEthereum for simple payment transactions for the
two benchmarks. The X-axis corresponds to the number
of accounts in the genesis state (in millions) and the
Y-axis corresponds to the throughput (in TPS) when
the blocks are imported from disk. Our results show
that the standard OpenEthereum’s MPT model handles
a relatively small initial state fairly well, and can reach
up to 2000 TPS for 1 million accounts for both the
Ethereum and random sender traces benchmarks. How-
ever, it drastically slows down to about 1000 TPS in
importing blocks when the initial state is 3 million
accounts. At 10 million accounts in the initial state, the
standard OpenEthereum starts to significantly slow down
on our 30GB memory machine, and for more than 10
million accounts, it fails to make much progress on the
machine.

On the other hand, the LMPT-based OpenEthereum
can achieve around 3000 TPS for 1 million accounts,
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Fig. 11: TPS for LMPT-based OpenEthereum and the
standard OpenEthereum for ERC20 transfer transactions.
The top graph corresponds to the Ethereum traces bench-
mark and the bottom graph corresponds to the random
senders traces benchmark.

a 50% improvement over the standard OpenEthereum.
It is also able to sustain much higher performance
for a large number of senders, and gets up to 2000
TPS for 10 million senders. For both benchmarks, the
LMPT outperforms the standard client by a factor of 6
for a large initial state. After the initial state reaches
around 20 million accounts, we finally see a noticeable
drop and saturation in performance for the LMPT-based
OpenEthereum, which is twice the threshold reached by
the standard OpenEthereum.

The LMPT structure allows for higher sustained per-
formance because as the state trie gets bigger, LMPT
can still cache hot data and account information into its
delta and intermediate tries. In addition, since merging
the snapshot trie on disk is done in parallel to the main
execution thread, there is minimal blocking when state is
imported. Contrarily, the standard OpenEthereum needs
to execute increasingly more state reads from disk as the
state grows larger, which slows it down drastically.

D. ERC20 Transfers

Similar to the simple payment traces, we sample
transactions for the Tether token to generate real
life workloads for the ERC20 contract. We deploy the
ERC20 contract on a private network, initialize the con-



tract address, synthesize a set of accounts, and fund them
with some initial tokens. Then, we use our generated
senders to call the transfer function and send the tokens
according to our sampled transactions trace. For the ran-
dom senders benchmark, we initialize senders addresses
with enough tokens and call the transfer function with
an even distribution.

Fig. 11 illustrates the size of initial state versus
performance for LMPT-based OpenEthereum and the
standard OpenEthereum for ERC20 tokens transfers
transactions for the two benchmarks. The performance
on ERC20 contracts are noticeably lower because they
require more computation and gas. However, the results
are similar to the simple payments as the standard
OpenEthereum reaches saturation much more quickly as
the state grows in size. For 1 million accounts, LMPT-
based OpenEthereum had around 2000 TPS and could
sustain that performance for 3−5 millions accounts. On
the other hand, the standard OpenEthereum had around
1600 TPS for 1 million accounts and performance
quickly dropped as the size of the initial state increases.
For 10 million accounts, LMPT-based OpenEthereum
outperforms standard OpenEthereum by a factor 4. This
shows that LMPT is able to maintain better throughput
as the initial state grows. These results also suggest
that LMPT is an effective solution for blockchains that
support smart contracts and require more complex state
reads and writes.

V. RELATED WORK

In this section, we discuss other recent Layer-1
solutions that attempt to improve blockchain throughput.

Distributed MPTs: A number of works [23], [25]
study distributed MPTs to improve storage performance.
In [25], the authors introduce mLSM, which splits the
storage layer into multiple MPTs. This allows to reduce
the authenticated read and write amplification. By de-
coupling the verifier with the lookup, mLSM reduced
the I/O workload between reads and writes. However,
increasing the number of levels in the MPT structure
introduces a separate write amplification between layers
and performance considerations need to be made when
doing compaction between different tries.

In [23], the authors introduce Rainblock, which
uses distributed sharding for the MPTs to improve
storage performance in Ethereum based clients [23].
The underlying architecture proposes to decouple nodes
into clients, miners, and storage nodes. This allows the
storage nodes to use a distributed and sharded MPT in
order to provide witness proofs to verify blocks based
on the Merkle root. However, Rainblock requires
major changes to existing Ethereum clients, as there
is no such distinction between clients, miners and

storage nodes. On the other hand, our LMPT design
does not require major architectural changes and can
be applied directly to existing nodes in Ethereum with
few modifications, as we discussed in Section III.

Consensus protocols: There are many works that
improve transaction throughput in blockchain systems by
using novel consensus protocols with varying tradeoffs
[10], [12], [15], [18]. Although improving consensus
protocols is an important concern, the transaction
execution will still be a bottleneck by blocking
I/O calls made by clients. As the blockchain state
increasingly grows, the storage bottleneck will be the
main problem faced by blockchain clients to overcome
for scaling transaction throughput. Our proposed LMPT
can be implemented with any consensus mechanism,
allowing further improvements in performance.

Sharding in Blockchains: There are a number of
works on improving throughput in blockchain platforms
through sharding transaction execution and sharding the
blockchain state [9], [14], [19], [22]. The Ethereum com-
munity has also been receptive to sharding consensus
solutions as a part of the ETH2 protocol [8]. Sharding
proposes validator nodes to split up into smaller com-
mittees and validate a portion of the entire blockchain
state. By separating groups of validator nodes, the nodes
can also validate blocks with fewer resources, as it only
needs to keep track of a small portion of the state
and can allow more validators to participate on limited
computing power. However, sharding also introduces
the problem of malicious nodes gaining easier access
to attack the blockchain. This is because the state is
more vulnerable to fragmentation, and sharding requires
stricter network guarantees and fewer overall validators
in each shard committee [24], [27]. In addition, sharding
often requires heavy cross-shard communication and
more networking overhead as nodes need to coordinate
with other nodes that have different portions of the state
[28]. Ultimately, sharding is orthogonal to the problem
LMPTs are solving by enabling a more performant
storage structure.

VI. CONCLUSION

The LMPT is a novel storage structure that can
significantly improve transaction processing in the
blockchain storage layer. This paper shows that it is
able to be easily integrated to existing blockchain clients
and can be used to improve throughput, in addition to
novel consensus mechanisms. Ultimately, our results
show that the LMPT is able to parallelize execution in
the critical path and is effective for improving import
performance in block catchup, especially for large states.
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