
LMPTs:
Eliminating Storage Bottlenecks for
Processing Blockchain Transactions

Jemin Andrew Choi ¹, Sidi Mohamed Beillahi ¹, Peilun Li ², Andreas Veneris ¹, Fan Long ¹

 ¹ University of Toronto ² Shanghai Tree-Graph Blockchain Research Institute

ICBC 2022

Contents

❏ Motivation

❏ Background

❏ Overview & Design

❏ Evaluation

❏ Conclusion

2

Motivation

● Existing blockchain platforms have been (notoriously) slow
○ Lots of progress in consensus layer performance

● What’s next?
○ Improve transaction execution and storage layer performance

3
https://www.datadriveninvestor.com/2018/10/05/moving-to-an-era-of-highly-scalable-blockchain-networks/

Prior Work

● Previously profiled Ethereum clients to examine biggest
bottleneck after consensus

4
Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime validation. PLDI 2020

Storage Verifier EVM Other

ERC20 67.0% 25.9% 3.9% 3.2%

ERC721 73.5% 18.3% 5.7% 2.5%

ERC1202 73.1% 20.5% 3.6% 2.8%

Prior Work

● Previously profiled Ethereum clients to examine biggest
bottleneck after consensus
○ State updates on the blockchain are expensive
○ Storage layer is the next performance bottleneck

5
Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime validation. PLDI 2020

Storage Verifier EVM Other

ERC20 67.0% 25.9% 3.9% 3.2%

ERC721 73.5% 18.3% 5.7% 2.5%

ERC1202 73.1% 20.5% 3.6% 2.8%

Profiling with perf

● Similarly, our findings with perf yielded consistent results
with prior work
○ Sequential I/O operations are on the critical path and blocks

verifier threads

6

Profiling with perf

● Similarly, our findings with perf yielded consistent results
with prior work
○ Sequential I/O operations are on the critical path and blocks

verifier threads

7

Profiling with perf

● EVM opcodes such as SSTORE and SLOAD reduce performance
○ Since txn execution thread evaluates EVM sequentially, entire

thread is slowed down by state accesses

8

Preview of LMPTs

● Increasing cache sizes has minimal impact on throughput

● Reading/Writing values from storage faster is imperative in
improving transaction throughput

● Contributions:
○ Faster and parallelized authenticated storage structure
○ x6 throughput compared to existing EVM clients

9

Contents

✓ Motivation

❏ Background

❏ Overview & Design

❏ Evaluation

❏ Conclusion

10

How Ethereum Stores State

● State trie is represented by a Merkle-Patricia Tree (MPT)

○ Using the keccak256 hash of account address to access account
information and state

○ Block headers store the Merkle root to check if state has been
tampered

○ Light clients rely on partial Merkle proofs to verify state on chain
through authenticated reads

11

Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum

12

Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum

13

Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum

14
query

Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum

15

hash root

partial proof

query

Merkle Patricia Trees (MPT)

● Merkle property &
Compress nodes with
shared hash sequence

○ Interior node contain
hashes of its children

○ Leaf node contain account
info (e.g. balance, nonce)

○ Root node contains hashes
of all nodes in the tree

16

Merkle Patricia Trees (MPT)

● Merkle property &
Compress nodes with
shared hash sequence

○ Interior node contain
hashes of its children

○ Leaf node contain account
info (e.g. balance, nonce)

○ Root node contains hashes
of all nodes in the tree

17

Merkle Patricia Trees (MPT)

● Merkle property &
Compress nodes with
shared hash sequence

○ Interior node contain
hashes of its children

○ Leaf node contain account
info (e.g. balance, nonce)

○ Root node contains hashes
of all nodes in the tree

18

Merkle Patricia Trees (MPT)

● Merkle property &
Compress nodes with
shared hash sequence

○ Interior node contain
hashes of its children

○ Leaf node contain account
info (e.g. balance, nonce)

○ Root node contains hashes
of all nodes in the tree

19

Merkle Patricia Trees (MPT)

● Merkle property &
Compress nodes with
shared hash sequence

○ Path: 32-byte hash of addr

○ Each node is 1 db read

○ x64 read amplification!

20

Contents

✓ Motivation

✓ Background

❏ Overview and Design

❏ Evaluation

❏ Conclusion

21

Overview

● Reduce read & write
amplification by storing
hot data on smaller MPTs
that sit in memory
(“Layered” MPT)

22

Overview

● Don’t query disk unless
absolutely necessary

● Have a separate K-V store
for non-authenticated
reads

● Parallelize execution by
flushing updates to disk in
background

23

Design: Read and Writes

● Writes
○ Always updated on smallest delta trie (fast & frequent data)

24

Design: Read and Writes (cont.)

● Reads

○ First, query delta trie and
if it exists, return the value
and path

25

Design: Read and Writes (cont.)

● Reads

○ If miss, need to return
proof that two immediately
adjacent paths exist in the
tree instead.

○ Then, query the
intermediate trie, and if it
exists, return the value and
combined proof of the delta
+ intermediate trie

26

Design: Read and Writes (cont.)

● Reads

○ If the key is not in the delta or
intermediate trie, query disk

27

Read
State

Design: Read and Writes (cont.)

● For authenticated reads, read the
snapshot trie

● If client trust the authenticity of
data (e.g. reading from its own
disk), then look up the value in the
flat k-v map

● Delay costly disk accesses and
reduce read amplification on
bigger tries

28

Read
State

Design: Trie Merging Operations

● merge_compute()
○ Periodically, intermediate trie

changes are merged to
snapshot trie and flat k-v store
on disk

○ Reduce write amplification by
updating smaller portion of trie

29

Design: Trie Merging Operations (cont.)

● merge_update()

○ Flush changes in smaller tries to bigger tries

○ Set snapshot trie to output of merge_compute()

○ Set intermediate trie & root to delta trie

○ Initialize new trie & root for delta trie

30

Design: Trie Merging Operations (cont.)

● At predefined “merge intervals”, call merge_update() to flush
changes to tries

● In a background thread, call merge_compute() to batch disk
operations in parallel to the main execution thread

31

if block_cnt % merge_interval == 0:
Wait for last spawned thread to end
merge_update(Trie, root, flat)
spawn_thread(root, flat = merge_compute(Trie))

Design: Integration with EVM

● LMPT has the advantage of being easily integrated with
EVM-based systems with the following modifications

○ Use hash functions like keccak256 to combine root hashes of the
smaller tries to generate a single 32-byte root hash of state

○ Since authentication proof requires a combination of proofs from
tries, modify the verifier module to accept a combination proof

32

Contents

✓ Motivation

✓ Background

✓ Overview & Design

❏ Evaluation

❏ Conclusion

33

LMPT Evaluation

● Modified OpenEthereum client to integrate LMPT
○ Turn off the consensus engine to compare storage layer

● Ran experiments on 500,000 transactions on AWS EC2
○ Tested on Simple payment and ERC20 transfer transactions
○ Sample trace from real Ethereum network
○ Randomly send transactions with uniform distribution

● Set initial states with increasing number of accounts in
genesis block
○ Increase storage performance workload for larger initial state

34

LMPT Evaluation

● Simple payments

○ Ethereum Trace on top
○ Random senders on bottom

● Upto x6 throughput on LMPT
client vs regular client with MPT

○ After 20M, regular client fails to
make much progress, whereas
LMPT can handle larger state

35

x6

LMPT Evaluation

● ERC20 transfers

● x3~8 throughput on LMPT client
vs regular client

● LMPT is effective in smart
contract data accesses

36

x3.3

x8

Contents

✓ Motivation

✓ Background

✓ Overview & Design

✓ Evaluation

❏ Conclusion

37

Conclusion

● As consensus bottleneck is removed and blockchain state
grows, storage layer performance will be critical in
high-throughput ledgers

● LMPTs allow faster access to hot data and enable
I/O operations to be decoupled from the critical path

● Easy to integrate with existing EVM systems

38

