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Motivation

● Existing blockchain platforms have been (notoriously) slow
○ Lots of progress in consensus layer performance

● What’s next?
○ Improve transaction execution and storage layer performance
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Prior Work

● Previously profiled Ethereum clients to examine biggest 
bottleneck after consensus
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Prior Work

● Previously profiled Ethereum clients to examine biggest 
bottleneck after consensus
○ State updates on the blockchain are expensive 
○ Storage layer is the next performance bottleneck
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Profiling with perf

● Similarly, our findings with perf yielded consistent results 
with prior work
○ Sequential I/O operations are on the critical path and blocks 

verifier threads 
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Profiling with perf

● EVM opcodes such as SSTORE and SLOAD reduce performance
○ Since txn execution thread evaluates EVM sequentially, entire 

thread is slowed down by state accesses
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Preview of LMPTs

● Increasing cache sizes has minimal impact on throughput

● Reading/Writing values from storage faster is imperative in 
improving transaction throughput

● Contributions: 
○ Faster and parallelized authenticated storage structure
○ x6 throughput compared to existing EVM clients
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How Ethereum Stores State

● State trie is represented by a Merkle-Patricia Tree (MPT)

○ Using the keccak256 hash of account address to access account 
information and state

○ Block headers store the Merkle root to check if state has been 
tampered

○ Light clients rely on partial Merkle proofs to verify state on chain 
through authenticated reads
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Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum
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Merkle Trees

● Merkle Trees combine hashes of its children
● Clients can check hash to ensure the reliability of data

○ Authenticated reads in Ethereum
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Merkle Patricia Trees (MPT)

● Merkle property &   
Compress nodes with 
shared hash sequence

○ Interior node contain 
hashes of its children

○ Leaf node contain account 
info (e.g. balance, nonce)

○ Root node contains hashes 
of all nodes in the tree
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Merkle Patricia Trees (MPT)

● Merkle property &  
Compress nodes with 
shared hash sequence

○ Path: 32-byte hash of addr

○ Each node is 1 db read

○ x64 read amplification!
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Overview

● Reduce read & write 
amplification by storing 
hot data on smaller MPTs 
that sit in memory 
(“Layered” MPT)
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Overview

● Don’t query disk unless 
absolutely necessary

● Have a separate K-V store 
for non-authenticated 
reads

● Parallelize execution by 
flushing updates to disk in 
background
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Design: Read and Writes

● Writes
○ Always updated on smallest delta trie (fast & frequent data)
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Design: Read and Writes (cont.)

● Reads

○ First, query delta trie and  
if it exists, return the value 
and path
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Design: Read and Writes (cont.)

● Reads

○ If miss, need to return 
proof that two immediately 
adjacent paths exist in the 
tree instead.

○ Then, query the 
intermediate trie, and if it 
exists, return the value and 
combined proof of the delta 
+ intermediate trie
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Design: Read and Writes (cont.)

● Reads

○ If the key is not in the delta or 
intermediate trie, query disk
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Design: Read and Writes (cont.)

● For authenticated reads, read the 
snapshot trie

● If client trust the authenticity of 
data (e.g. reading from its own 
disk), then look up the value in the 
flat k-v map

● Delay costly disk accesses and 
reduce read amplification on 
bigger tries
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Design: Trie Merging Operations

● merge_compute()
○ Periodically, intermediate trie 

changes are merged to 
snapshot trie and flat k-v store 
on disk

○ Reduce write amplification by 
updating smaller portion of trie

29



Design: Trie Merging Operations (cont.)

● merge_update()

○ Flush changes in smaller tries to bigger tries

○ Set snapshot trie to output of merge_compute()

○ Set intermediate trie & root to delta trie

○ Initialize new trie & root for delta trie
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Design: Trie Merging Operations (cont.)

● At predefined “merge intervals”, call merge_update() to flush 
changes to tries

● In a background thread, call merge_compute() to batch disk 
operations in parallel to the main execution thread
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if block_cnt % merge_interval == 0: 
Wait for last spawned thread to end 
merge_update(Trie, root, flat) 
spawn_thread(root, flat = merge_compute(Trie))



Design: Integration with EVM

● LMPT has the advantage of being easily integrated with 
EVM-based systems with the following modifications

○ Use hash functions like keccak256 to combine root hashes of the 
smaller tries to generate a single 32-byte root hash of state

○ Since authentication proof requires a combination of proofs from 
tries, modify the verifier module to accept a combination proof
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LMPT Evaluation

● Modified OpenEthereum client to integrate LMPT
○ Turn off the consensus engine to compare storage layer

● Ran experiments on 500,000 transactions on AWS EC2
○ Tested on Simple payment and ERC20 transfer transactions
○ Sample trace from real Ethereum network
○ Randomly send transactions with uniform distribution

● Set initial states with increasing number of accounts in 
genesis block
○ Increase storage performance workload for larger initial state
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LMPT Evaluation

● Simple payments

○ Ethereum Trace on top
○ Random senders on bottom

● Upto x6 throughput on LMPT 
client vs regular client with MPT

○ After 20M, regular client fails to 
make much progress, whereas 
LMPT can handle larger state
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LMPT Evaluation

● ERC20 transfers

● x3~8 throughput on LMPT client 
vs regular client

● LMPT is effective in smart 
contract data accesses
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x3.3
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Conclusion

● As consensus bottleneck is removed and blockchain state 
grows, storage layer performance will be critical in 
high-throughput ledgers

● LMPTs allow faster access to hot data and enable                
I/O operations to be decoupled from the critical path

● Easy to integrate with existing EVM systems
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