LMPTs:

Eliminating Storage Bottlenecks for
Processing Blockchain Transactions

Jemin Andrew Choi ', Sidi Mohamed Beillahi 1, Peilun Li 2, Andreas Veneris 1, Fan Long 1

1 University of Toronto 2 Shanghai Tree-Graph Blockchain Research Institute

|ICBC 2022

Contents

O Motivation
Background
Overview & Design

Evaluation

I H H N

Conclusion

Motivation

e Existing blockchain platforms have been (notoriously) slow
o Lots of progress in consensus layer performance

e What’s next?
o Improve transaction execution and storage layer performance

24 000 transactions

per second are processed
by Visa (60-year-old company)

https://www.datadriveninvestor.com/2018/10/05/moving-to-an-era-of-highly-scalable-blockchain-networks/

Prior Work

e Previously profiled Ethereum clients to examine biggest
bottleneck after consensus

ERC20 67.0% 25.9% 3.9% 3.2%

ERC721 73.5% 18.3% 5.7% 2.5%
ERC1202 73.1% 20.5% 3.6% 2.8%

Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime validation. PLDI 2020

Prior Work

e Previously profiled Ethereum clients to examine biggest

bottleneck after consensus
o State updates on the blockchain are expensive
o Storage layer is the next performance bottleneck

| o v

ERC20 67.0% 25.9% 2%
2.5%

Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime validation. PLDI 2020

Profiling with perf

e Similarly, our findings with perf yielded consistent results

with prior work
o Sequential I/O operations are on the critical path and blocks

verifier threads
1/0 1/0
TII Ol ... I

Verifier waits on the critical path Verifier
% I-Iﬂ

Read request

Profiling with perf

e Similarly, our findings with perf yielded consistent results

with prior work
o Sequential I/O operations are on the critical path and blocks
verifier threads

/O /0
Handler @ Handler
Verifier waits on the critical path Verifier
\ ,/I-Iﬂ

Read request

{
l
l
l
l

Profiling with perf

® EVM opcodes such as SSTORE and SLOAD reduce performance

o Since txn execution thread evaluates EVM sequentially, entire
thread is slowed down by state accesses

Solidity contract EVM State trie

bal[from] -= a;
SLOAD

bal[to] += a;
SSTORE

;

func t(addr to, int a){ | EEEEEW| ... , |,
(_

Invoke load operation in EVM reads/writes Wait for DB to
the EVM from DB fetch data

Preview of LMPTs

® Increasing cache sizes has minimal impact on throughput

e Reading/Writing values from storage faster is imperative in
improving transaction throughput

e Contributions:
o Faster and parallelized authenticated storage structure
o x6 throughput compared to existing EVM clients

Contents

v/ Motivation
Background
Overview & Design

Evaluation

L O O O

Conclusion

10

How Ethereum Stores State

e State trie is represented by a Merkle-Patricia Tree (MPT)

o Using the keccak256 hash of account address to access account
information and state

o Block headers store the Merkle root to check if state has been
tampered

o Light clients rely on partial Merkle proofs to verify state on chain
through authenticated reads

11

Merkle Trees

e Merkle Trees combine hashes of its children

e Clients can check hash to ensure the reliability of data
o Authenticated reads in Ethereum

Hash(A, B)

12

Merkle Trees

e Merkle Trees combine hashes of its children

e Clients can check hash to ensure the reliability of data
o Authenticated reads in Ethereum

Hash((A, B), (C, D))

Hash(A, B) Hash(C, D)

13

Merkle Trees

e Merkle Trees combine hashes of its children

e Clients can check hash to ensure the reliability of data
o Authenticated reads in Ethereum

Hash((A, B), (C, D))

Hash(A, B) Hash(C, D)

14

Merkle Trees

e Merkle Trees combine hashes of its children

e Clients can check hash to ensure the reliability of data
o Authenticated reads in Ethereum

15

Merkle Patricia Trees (MPT)

Root

e Merkle property & Hash(A,B)
Compress nodes with
shared hash sequence

. . B
O
Interior node contain

hashes of its children

Branch

o Leaf node contain account
info (e.g. balance, nonce)

o Root node contains hashes
of all nodes in the tree

16

Merkle Patricia Trees (MPT)

Root

e Merkle property & Hash(A,B)
Compress nodes with
shared hash sequence

Branch

o Interior node contain
hashes of its children

o Leaf node contain account
info (e.g. balance, nonce)

o Root node contains hashes
of all nodes in the tree

17

Merkle Patricia Trees (MPT)

Root

e Merkle property & Hash(A,B)
Compress nodes with
shared hash sequence

Branch

o Interior node contain
hashes of its children

o Leaf node contain account
info (e.g. balance, nonce)

o Root node contains hashes
of all nodes in the tree

18

Merkle Patricia Trees (MPT)

e Merkle property & B Hash(A,B) 5
Compress nodes with
shared hash sequence

Branch

o Interior node contain
hashes of its children

o Leaf node contain account
info (e.g. balance, nonce)

o Root node contains hashes
of all nodes in the tree

19

Merkle Patricia Trees (MPT)

Root

e Merkle property & Hash(A,B)
Compress nodes with
shared hash sequence

o Path: 32-byte hash of addr
o Each node is 1 db read

Branch

o x64 read amplification!

20

Contents

v/ Motivation
Background
Overview and Design

Evaluation

L O O SN

Conclusion

21

Overview

-

e Reduce read & write
amplification by storing
hot data on smaller MPTs
that sit in memory
(“Layered” MPT)

1. Delta MPT

v

3. Snapshot MPT

(Authenticated)

vi
| k2 | v2
| k3 | v3

3. Flat KV Store
(Simple)
Disk

2. Intermediate
MPT

’___________\

22

Overview

Read State

Don’t query disk unless
absolutely necessary

Have a separate K-V store

: 1. Delta MPT
for non-authenticated ¢
reads -
Parallelize execution by =] [b]
flushing updates to disk in 5. Intermediata

background MPT
Memory

-

3. Snapshot MPT
(Authenticated)

vi
| k2 | v2
| k3 | v3

3. Flat KV Store
(Simple)

’_
1=
o
ol

Design: Read and Writes

e \Writes
o Always updated on smallest delta trie (fast & frequent data)

Write

State H u

1. Delta MPT

24

Design: Read and Writes (cont.)

e Reads

o First, query delta trie and
if it exists, return the value

and path 3 (value, path)

1. Delta MPT

2. Intermediate
MPT

Memory 25

Design: Read and Writes (cont.)

Reads

©)

If miss, need to return
proof that two immediately
adjacent paths exist in the
tree instead.

Then, query the
intermediate trie, and if it
exists, return the value and
combined proof of the delta
+ intermediate trie

1. Delta MPT
i A (value, path)

H n 3 (value, proof)

2. Intermediate
MPT

Memory 26

Design: Read and Writes (cont.)

e Reads
o If the key is not in the delta or
intermediate trie, query disk

3. Snapshot MPT
Read (Authenticated)

State >

v2

v3

3. Flat KV Store

(Simple)
Disk

27

Design: Read and Writes (cont.)

e For authenticated reads, read the
snapshot trie

e |f client trust the authenticity of
data (e.g. reading from its own
disk), then look up the value in the 3. Snapshot MPT
flat k-v map Read] (Authenticated)
e Delay costly disk accesses and State V1
reduce read amplification on
bigger tries v3

3. Flat KV Store
(Simple)
Disk

28

Design: Trie Merging Operations

e merge_ compute()

©)

Periodically, intermediate trie
changes are merged to
snapshot trie and flat k-v store
on disk

Reduce write amplification by
updating smaller portion of trie

ih o

3. Snapshot MPT
(Merge with
Intermediate MPT in
background)

Background Thread

29

Design: Trie Merging Operations (cont.)

e merge update()

©)

©)

©)

Flush changes in smaller tries to bigger tries
Set snapshot trie to output of merge compute()
Set intermediate trie & root to delta trie

Initialize new trie & root for delta trie

30

Design: Trie Merging Operations (cont.)

e At predefined “merge intervals”, call merge _update() to flush
changes to tries

e In a background thread, call merge compute() to batch disk
operations in parallel to the main execution thread

if block cnt % merge_interval ==
Wait for last spawned thread to end
merge_update(Trie, root, flat)
spawn_thread(root, flat = merge compute(Trie))

31

Design: Integration with EVM

e LMPT has the advantage of being easily integrated with
EVM-based systems with the following modifications

o Use hash functions like keccak256 to combine root hashes of the
smaller tries to generate a single 32-byte root hash of state

o Since authentication proof requires a combination of proofs from
tries, modify the verifier module to accept a combination proof

32

Contents

v/ Motivation
Background
Overview & Design

Evaluation

L O N SN

Conclusion

33

LMPT Evaluation

e Modified OpenEthereum client to integrate LMPT

o Turn off the consensus engine to compare storage layer
e Ran experiments on 500.000 transactions on AWS EC2

o Tested on Simple payment and ERC20 transfer transactions

o Sample trace from real Ethereum network

o Randomly send transactions with uniform distribution
e Set initial states with increasing number of accounts in

genesis block

o Increase storage performance workload for larger initial state

34

B LMPT OpenEthereum

LMPT Evaluation

e Simple payments

o Ethereum Trace on top
o Random senders on bottom

™ 3M

e Upto x6 throughput on LMPT ® LMPT 1 OpenEthereum
client vs regular client with MPT

o After 20M, regular client fails to
make much progress, whereas
LMPT can handle larger state

Accounts in Initial state

B LMPT OpenEthereum

LMPT Evaluation

e ERC20 transfers

e Xx3~8 throughput on LMPT client
vs regular client

B LMPT OpenEthereum

e LMPT is effective in smart
contract data accesses

Accounts in initial state

Contents

v/ Motivation
Background
Overview & Design

Evaluation

0O s S SN

Conclusion

37

Conclusion

e As consensus bottleneck is removed and blockchain state
grows, storage layer performance will be critical in
high-throughput ledgers

e LMPTs allow faster access to hot data and enable
/O operations to be decoupled from the critical path

e Easy to integrate with existing EVM systems

38

